

WireShark/Ethereal

Bearbeiter: A. Lebedev, ET02wK1

© Professur Kommunikationstechnik, Prof. Dr.-Ing. habil. Lutz Winkler Hochschule Mittweida (FH) – University of Applied Sciences, Fakultät Elektro- und Informationstechnik

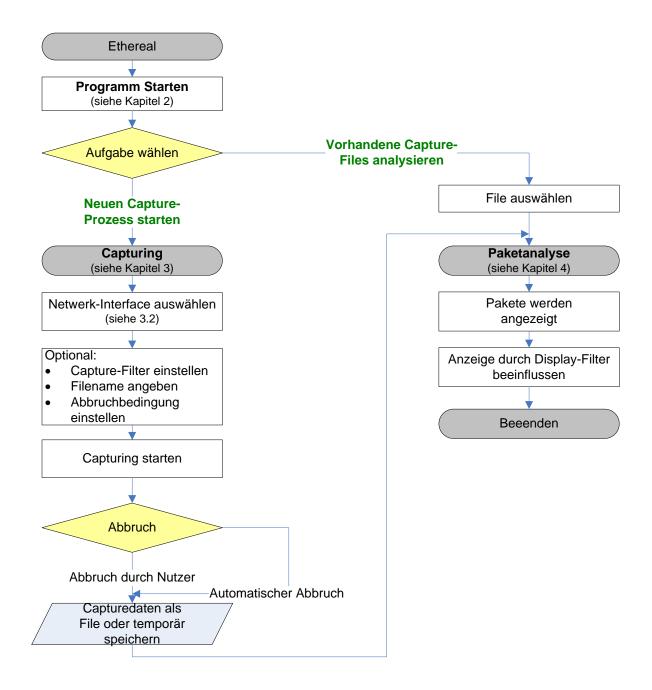
win@hs-mittweida.de https://www.telecom.hs-mittweida.de

WireShark ist ein leistungsfähiges Netzwerkanalysetool. Es ist aus **Ethereal** hervorgegangen. Damit kann man folgende Aufgaben lösen:

- Mitlesen von Protokolldateneinheiten einer Netzwerk-Kollisionsdomäne und deren Speicherung,
- o Auswertung mitgelesenen Protokolldateneinheiten bei verschiedener Detaillierung. **Ethereal/WireShark** ist eine Open Source Software. Die aktuellste Programmversion sowie Dokumentationen findet man unter http://www.wireshark.org

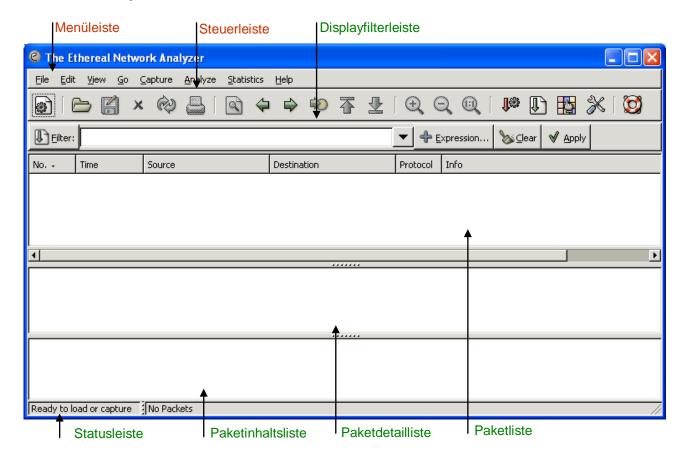
Diese Kurzbeschreibung und alle verwendete Bilder beziehen sich auf die Ethereal-Version 0.10.10.

Die WireShark-Oberfläche hat sich leicht verändert, ist aber im Wesentlichen unverändert. Insbesondere die zahlreichen Capture- und Anzeigefilter haben nach wie vor Gültigkeit.


ACHTUNG: Mit **WireShark** kann man Netzwerkprotokolle kennen lernen, Fehler in Netzwerken aufspüren aber auch alle Daten einer Kollisionsdomäne mitschneiden. Der private Einsatz solcher Netzwerkanalysetools in Bus- oder Hubnetzen ist kriminell und deshalb zu unterlassen.

1 Programmablauf	2
2 Programmoberfläche	3
2.1 Das Hauptfenster	
2.2 Menuleiste	
2.3 Steuerleiste	
3 Capturing	
3.1 Start und Capture-Optionsassistent	
3.2 Interfaceauswahl	
3.3 Capturefilter	
3.4 Start des Captureprozesses	
4. Analyse	
4.1 Auswahl der Analysedaten	
4.2 Erster Schritt	
4.3 Paketdarstellung	
4.3.1 Die Paketliste	
4.3.2 Paketdetailsliste	
4.3.3 Paketinhaltsliste	
4.4 Statusleiste	
4.5 Displayfilter	12
4.5.1 Einführung	
4.5.2 Displayfilterleiste	12
4.5.2.1 Displayfiltereingabe	13
4.5.3 Displayfiltersyntax	14
4.5.3.1 Einführung	14
4.5.3.2 Vergleichsoperatoren	14
4.5.3.3 Protokollelementtypen	14
4.5.3.4 Logische Verknüpfungen	
4.5.3.5 Substring-Operator	
4.5.3.6 Beispiele	
4.5.4 Filter Expression - Assistent	
4.5.5 Farbige Darstellung einzelner Pakete	
Anlage: Spezielle Capturefilter	
IP-bezogene Filter	
Elemente-Indizierung des Arrays ip:	
IP-ToS-Feld (Type of Service)	
IP-Protokoll-Feld	
TCP-bezogene Filter	
Elemente-Indizierung des Arrays tcp:	
UDP-bezogene Filter	
Elemente-Indizierung des Arrays udp:	
ICMP-bezogene Filter	
Elemente-Indizierung des Arrays icmp:	21

1 Programmablauf


Mittels **Ethereal** kann man Protokollnachrichten aufzeichnen und aufgezeichnete Protokollnachrichten analysieren. Aus der Abbildung sind diese Hauptabläufe erkennbar:

- (1) Programm starten, neuen Capture-Prozess starten und ausführen, anschließend aufgenommene Paket-Daten analysieren.
- (2) Programm starten, vorhandene Capture-Files laden und anschließend Paket-Daten analysieren.

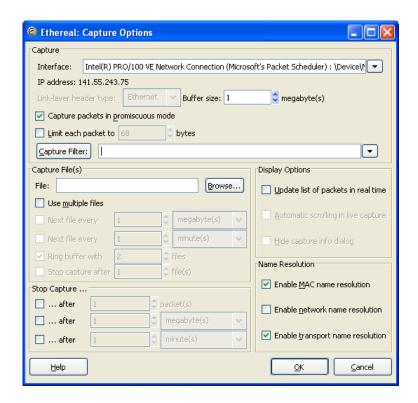
2 Programmoberfläche

2.1 Das Hauptfenster

2.2 Menuleiste

Menü	Kurzbeschreibung	
File	Öffnen und Vereinigen von Capture-Files, Speichern, Drucken, Export von Capture-	
	Files im Ganzen oder teilweise, Verlassen des Programms	
Edit	Suchen eines Paketes, Zeitbezugnahme oder Markierung eines oder mehrerer Pakete,	
	Parametereinstellung	
View	Steuerung von Darstellungsoptionen der Paketliste: Farben, Schriftart -größe, Anzeige	
	eines Paketes in separatem Fenster, Zeigen/Verbergen von Details usw.	
Go	Steuerung in der Paketliste	
Capture	Start/Stopp des Captureprozesses, Einstellen des Capturefilters	
Analyze	Einstellungen des Anzeigefilters, Aktivieren/Deaktivieren der Protokolldekodierung,	
	Konfiguration nutzerspezifischer Decoder usw.	
Statistics	Darstellung statistischer Informationen wie: Anzahl der Pakete,	
	Protokollhierarchiestatistik usw.	
Help	Hilfe, Liste der unterstützten Protokolle, Online- Hilfe, Link zur Entwicklerseite und	
	"about"-Information.	

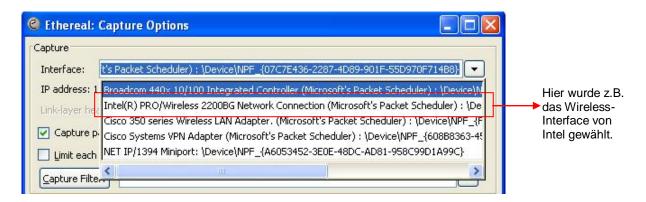
2.3 Steuerleiste


Button	Menü/Befehl	Funktion
	Capture/Start	Start eines neuen Captureprozesses
	File/Open	Öffnen eines gespeicherten Capturefiles um z.B. die Protokolldaten zu analysieren
	File/Save As	Speichern der der Protokolldaten in ein Capturefile
×	File/Close	Schließen des aktuellen Capturefiles
(4)	View/Reload	Laden des aktuellen Capturefiles neu
	File/Print	Drucken aller oder ausgewählter Pakete in ein File, auf den Drucker
9	Edit/Find Packet	Paketsuche nach Typ (z.B. tcp, http) oder Inhalt (Hexwert, String)
4	Go/Back	In Pakethistorie rückwärts gehen
	Go/Forward	In Pakethistorie vorwärts gehen
₩	Go/Go to Packet	Sprung zu einer angegeben Paketnummer
不	Go/First Packet	Sprung zum ersten Paket
₹	Go/Last Packet	Sprung zum letzten Paket
⊕,	View/Zoom In	Schriftvergrößerung
Q	View/Zoom Out	Schriftverkleinerung
•	View/Normal Size	Normale Schriftgröße
19	Capture/Captur e Filters	Einstellung des Capturefilter
D	Analyse/Display Filters	Displayfilter editieren, anwenden, speichern usw.
	View/Coloring Rules	Farbfestlegungen editieren, anwenden, speichern usw.
*	Edit/Preferences	Ethereal-Basiseinstellungen
©	Help/Contents	Ethereal-Hilfe

Displayfilterleiste, **Paketliste**, **Paketdetailliste**, **Paketinhaltsliste** und **Statusleiste** werden im Kapitel 4 Analyse beschrieben.

3 Capturing

3.1 Start und Capture-Optionsassistent


Button **Start a new live capture** oder **Capture/Start** in der Menuleiste auswählen. Danach erscheint folgendes Dialogfenster.

Hier können verschiedene Optionen zum Captureprozess eingestellt werden, wie z.B.: das Interface von dem aufgenommen werden soll, Capturefilter zur Steuerung der Aufnahme, Capturefile zum Speichern, Displayoptionen und automatische Abbruchbedingungen. Weitere Details zu den einzelnen Optionen findet man in Help/Contens/Capturing oder unter: http://www.ethereal.com/docs/

3.2 Interfaceauswahl

Vor dem Start der Capturing muss ein Capture-Interface unbedingt eingestellt werden. Der Prozess kann sonst nicht gestartet werden.

3.3 Capturefilter

Nachfolgend werden oft benötigte Capturefilter dargestellt.

[src|dst] host <ip-address|host-name>

Filtern von Paketen die von/zu einem Host kommen/gehen mittels der Schicht-3-Adresse (IP-Adresse). Der Host wird durch seine numerische Adresse oder seinen Namen adressiert. Mit <code>src|dst</code> kann man einstellen, ob man alle kommenden | gehenden Pakete aufnehmen will. Ist <code>src|dst</code> nicht deklariert, werden alle kommenden und gehenden Pakete aufgenommen.

src host 10.10.10.10	Pakete die von 10.10.10.10 kommen
dst host 141.55.192.70	Pakete die zu 141.55.192.70 gehen
host 141.55.192.70	Pakete die von/zu 141.55.192.70 kommen/gehen
<pre>src host www.htwm.de</pre>	Pakete die von www.htwm.de kommen

ether [src dst] host <ehost>

Filtern von Paketen die von/zu einem Host kommen/gehen mittels der Schicht-2-Adresse (MAC-Adresse). Der Host wird durch seine MAC-Adresse adressiert. Mit <code>src|dst</code> kann man einstellen, ob man alle kommenden oder alle gehenden Pakete aufnehmen will. Ist <code>src|dst</code> nicht deklariert, werden alle kommenden und gehenden Pakete aufgenommen.

ether src host 00:07:77:64:09:32	Pakete die von 00:07:77:64:09:32 kommen
ether dst host 00:07:77:64:09:32	Pakete die zu 00:07:77:64:09:32 gehen
ether host 00:07:77:64:09:32	Pakete die zu/von 00:07:77:64:09:32 gehen/kommen

[src|dst] net <net> [mask <mask> | len <len>]

Filtern von Paketen die von/zu einem Netzwerk kommen/gehen mittels der Schicht-3-Netz-Adresse (IP-Netzadresse). Mit src | dst kann man einstellen, ob man alle kommenden oder alle gehenden Pakete aufnehmen will. Ist src | dst nicht deklariert, werden alle kommenden und gehenden Pakete aufgenommen.

src net 10	Pakete die vom Netz 10 kommen
dst net 141.55	Pakete die zu Netz 141.55 gehen
net 141.55	Pakete die von/zu Netz 141.55 kommen/gehen
net 141.55 mask 255.255.0.50	Pakete die von/zu Netz 141.55 kommen/gehen aber nur jene, deren Adresse zusätzlich der Hostmaske genügt. Hier würden alle Pakete aufgenommen, die als Netzadresse 141.55. haben und zusätzlich an den markierten Maskenstellen 00000000.01010000 eine 1 in der Adresse haben.

<pre>[tcp udp] [src dst] port <port></port></pre>		
Mit diesem Ausdruck kann man auf Ports ¹ der Schicht-4-Protokolle TCP und UDP , filtern. Beachte: [tcp udp] muss vor [src dst] stehen.		
port 80	Pakete die von/zu Port 80 kommen/gehen, egal ob UDP oder TCP	
tcp dst port 80	Pakete, die zu TCP-Port 80 gehen	
udp port 4987	Pakete, die zu UDP-Port 4987 gehen	

¹ Alle Portnummer mit dazu gehörenden Diensten findet man in: %WINDIR%\system32\drivers\etc\services oder unter: http://www.iana.org/assignments/port-numbers

col>

Mit diesem Ausdruck kann nach Protokollen gefiltert werden. Solche Protokolle sind beispielsweise: icmp, igmp, igrp, pim, ah, esp, vrrp, udp, tcp usw.

18.11p) 18.1p) pinn, and cap) top astr.	
tcp	Alle TCP-Pakete
udp	Alle UDP-Pakete.
<pre>icmp icmp6 igmp igrp pim ah esp vrrp moprc mopdl lat sca decent atalk rarp arp ip ip6 aarp iso stp ipx netbeui</pre>	Alle nebenstehenden Protokolle, wobei die wichtigsten fett dargestellt sind.

proto \ol>

Mit diesem Ausdruck kann nach Protokollen gefiltert werden. Solche Protokolle sind: tcp, udp, ip, icmp Beachte: Da tcp,udp, ip, icmp Schlüsselworte sind, müssen sie mit einem Escape-Zeichen, hier der Backslash, versehen werden (\tcp, \udp, \ip, \icmp).

proto \tcp	Alle TCP-Pakete
<pre>proto \udp proto \ip </pre>	Alle UDP-Pakete Alle IP-Pakete
proto \icmp	Alle ICMP-Pakete

ip ip6 proto \orotocol>

Mit diesem Ausdruck können Protokolle gefiltert werden, die direkt IP nutzen. Solche Protokolle sind: icmp, udp, tcp. **Beachte:** Da tcp,udp, ip, icmp Schlüsselwörter sind, müssen sie mit einem Escape-Zeichen, hier der Backslash, versehen werden (\tcp, \udp, \icmp).

ip proto \tcp	Alle TCP-Pakete
ip proto \udp ip proto \icmp	Alle UDP-Pakete Alle ICMP-Pakete

ether proto \oto

Mit diesem Ausdruck können Protokolle gefiltert werden, die direkt Ethernet nutzen. Solche Protokolle sind: ip, ip6, arp, rarp atalk, decnet sca, lat, mopdl, moprc. **Beachte:** Da ip, ip6, arp, rarp usw. Schlüsselworte sind, müssen sie mit einem Escape-Zeichen, hier der Backslash, versehen werden (\ip, \ip6, \arp, \rarp).

ether proto \ip	Alle IP-Pakete
ether proto \ip6	Alle IP6-Pakete
ether proto \arp	Alle ARP-Pakete
ether proto \rarp	Alle RARP-Pakete
ether proto \atalk	Alle ATALK-Pakete
ether proto \decnet	Alle DECNET-Pakete
ether proto \sca	Alle SCA-Pakete
ether proto \lat usw.	Alle LAT-Pakete usw.

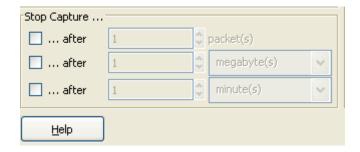
[ether | ip] broadcast | multicast

Mit diesem Ausdruck können Pakete gefiltert werden, die multicast bzw. broadcast in der Schicht 3 oder Schicht 2 oder beiden Schichten gesendet werden.

Sement 2 oder Seiden Sementen gesendet werden.	
broadcast multicast	Alle Pakete die broadcast multicast gesendet/empfangen werden in Schicht 3 und 2
ip brodcast ip multicast	Alle IP-Pakete die broadcast multicast gesendet/empfangen werden
ether broadcast ether multicast	Alle Ethernet-Pakete die broadcast multicast gesendet/empfangen werden.

less great	er <length> bzw</length>	. len <	= >= <length></length>		
Dieser Ausdruck f	iltert Pakete dessen Länge	kleiner ode	r gleich bzw. größer oder gleich <length> ist.</length>		
less 80 1	en <= 80		Pakete die gleich oder kleiner als 80 Byte sind.		
greater 102	24 len >= 1024		Pakete, die gleich oder größer 1024 Byte sind.		
Für Vergleichsausdr	rücke in den Längenangaben §	gilt folgende	Notation:		
less 80	len <= 80	Pakete, die	gleich oder kleiner 80 Byte sind		
	len < 80 Pakete, die kleiner als 80 Byte sind				
greather 80	len >= 80	Pakete, die gleich oder größer 80 Byte sind			
	len > 80 Pakete, die größer 80 Byte sind				
len = 80 Pakete, die gleich 80 Byte sind					

→ Capturefilter können zusätzlich logisch verknüpft werden.


Beispiele für logische Verknüpfungen				
ip and less 80	IP-Pakete die gleich oder kleiner als 80 Byte sind.			
ether proto \ip && len>512	Ethernet-Pakete, die IP-Pakete transportieren und gleich oder größer 512 Byte sind.			
dst host 141.55.192.70 && port 80	Pakete, deren Ziel-IP-Adresse 141.55.192.70 ist und die zum Port 80 gehen.			
ip && ! src net 141.55	IP-Pakete deren Quelle nicht im Netz 141.55 liegt			
icmp[0]= 0 or icmp[0]= 8	ICMP-Pakete, deren Wert im Headerfeld [0] entweder 0 (d.h. Ein Ping-Replay) oder 8 ist (d.h. ein Ping-Request) ist.			
<pre>ip[0]&0x0f= 5 && !src net 141.55</pre>	IP-Pakete, deren Headerlänge 20 Byte groß ist (5*4Byte) und die nicht vom Netz 141.55. kommen.			
Für logische Verknüpfungen gibt es folgende Operatore	n			
and && UND-Vernüpfung von Bedingungen				
or II ODER-Vernüpfung von Bedingungen				
not ! Ausschluss von Bedingungen				
Allgemeine Deklaration logischer Ausdrücke für Capturefilter				
[not] primitive (and or) [not] primitive				
[!] primitive (&&) [!] primitive				

Bei einigen Protokollen, wie z.B. IP, TCP, UDP, ICMP ist es möglich nach einem bestimmten Wert in einer bestimmten Position zu filtern, z.B. nach der Headerlänge im IP-Protokoll oder einem Flag bei TCP. Der Protokollheader wird dabei als Array aufgefasst, beginnend mit [0]. Nachfolgend einige Beispiele, weitere Einzelheiten dazu → siehe Anlage A.

Capture-Filter-Aufgabe	Filterstring			
IP-Pakete mit Header-Länge =5*4Byte=20 Byte	ip [0:1]&0x0f=0x05 ip [0:1]&0x0f=5			
IP-Pakete, deren TTL < 128 sind	ip[8:1]<128 ip[8:1]<0x80			
IP-Pakete, deren Protokollfeld den Wert 6 hat (TCP)	ip [9:1]=6 ip [9:1]=0x06			
IP-Pakete mit Source-Adresse 141.55.192.70	ip [12:4]=0x8d37c046			
IP-Pakete mit Destination-Adresse 141.55.193.21	ip [16:4]=0x8d37c115			
TCP-Pakete, deren Source Port 80 ist	tcp[0:2]=0x0050 tcp[0:2]=80			
TCP-Pakete, deren Destination Port 3700 ist	tcp[2:2]=0x0e74 tcp[2:2]=3700			
TCP-Pakete mit Header größer/gleich 20 Byte	tcp[12:1]&0xf0>5 tcp[12:1]>0x50			
TCP-Pakete vom Typ ACK	tcp[13:1]=0x10			
TCP-Pakete mit Window-Feld größer/gleich 1000	tcp[14:2]>1000 tcp[14:2]>0x03e8			
ICMP-Pakete vom Typ Echo Request (ping)	icmp[0:1]=8			

3.4 Start des Captureprozesses

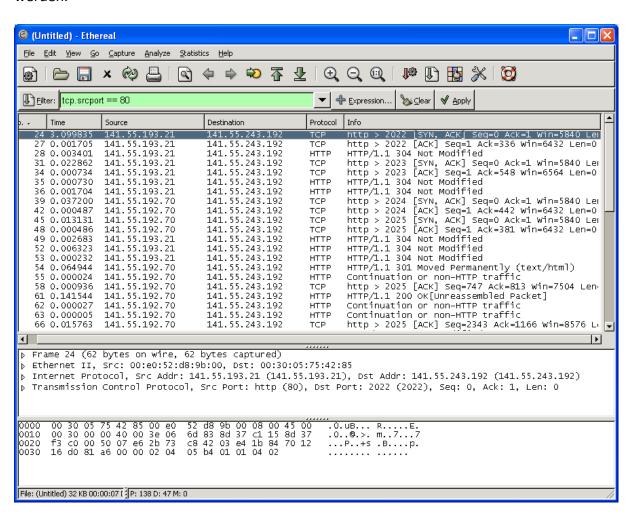
Nachdem ein Capture-Interface ausgewählt und ein Capture-Filter eingestellt wurde oder auch nicht, können zusätzlich Ende-Bedingungen für den Captureprozess eingestellt werden:

Mit **OK** werden alle vorgenommenen Einstellungen bestätigt und angewendet:

Nach dem **OK** werden in einem extra Fenster der Typ und die Anzahl der aufgenommenen Pakete sowie die Dauer der Aufzeichnung angezeigt:

Mit **Stop** kann der Captureprozess jederzeit manuell durch den Nutzer beendet werden, egal ob eine Ende-Bedingung programmiert wurde oder nicht.

Wenn die Aufzeichnung beendet ist, erscheint automatisch das Hauptfenster mit den aufgenommenen Paketen.


4. Analyse

4.1 Auswahl der Analysedaten

Ethereal ermöglicht die Datenanalyse gerade aufgenommener Pakete oder die Datenanalyse von gespeicherten Capturedaten. Weiterhin können auch Capturedaten von anderen Sniffer-Tools (z.B. Kismet, http://www.kismetwireless.net) analysiert werden. Kismet ist ein passiver WLAN-Sniffer.

4.2 Erster Schritt

Zur Datenanalyse besteht die Möglichkeit, die einzelnen Spalten der Pakteliste nach **No.** (Nummer), **Time** (Zeit), **Source** (Quelladresse), **Destination** (Zieladresse), **Protocol**, **Info** aufsteigend oder absteigend zu sortieren. Hierfür muss lediglich der jeweilige Spaltenkopf angeklickt werden.

4.3 Paketdarstellung

4.3.1 Die Paketliste

	1					
þ. +	Time	Source	Destination	Protocol	Info	Ĥ
24	3.099835	141.55.193.21	141.55.243.192	TCP	http > 2022 [SYN, ACK] Seq=0 Ack=1 Win=5840 Ler	
27	0.001705	141.55.193.21	141.55.243.192	TCP	http > 2022 [ACK] Seq=1 Ack=336 win=6432 Len=0	
28	0.003401	141.55.193.21	141.55.243.192	HTTP	HTTP/1.1 304 Not Modified	
31	0.022862	141.55.193.21	141.55.243.192	TCP	http > 2023 [SYN, ACK] Seq=0 Ack=1 Win=5840 Ler	
34	0.000734	141.55.193.21	141.55.243.192	TCP	http > 2023 [ACK] Seq=1 Ack=548 win=6564 Len=0	
35	0.000730	141.55.193.21	141.55.243.192	HTTP	HTTP/1.1 304 Not Modified	
36	0.001704	141.55.193.21	141.55.243.192	HTTP	HTTP/1.1 304 Not Modified	
39	0.037200	141.55.192.70	141.55.243.192	TCP	http > 2024 [SYN, ACK] Seq=0 Ack=1 win=5840 Ler	
42	0.000487	141.55.192.70	141.55.243.192	TCP	http > 2024 [ACK] Seq=1 Ack=442 win=6432 Len=0	
45	0.013131	141.55.192.70	141.55.243.192	TCP	http > 2025 [SYN, ACK] Seq=0 Ack=1 win=5840 Ler	
48	0.000486	141.55.192.70	141.55.243.192	TCP	http > 2025 [ACK] Seq=1 Ack=381 win=6432 Len=0	
49	0.002683	141.55.193.21	141.55.243.192	HTTP	HTTP/1.1 304 Not Modified	
	0.006323		141.55.243.192	HTTP	HTTP/1.1 304 Not Modified	
53	0.000232	141.55.193.21	141.55.243.192	HTTP	HTTP/1.1 304 Not Modified	
54	0.064944	141.55.192.70	141.55.243.192	HTTP	HTTP/1.1 301 Moved Permanently (text/html)	
55	0.000024	141.55.192.70	141.55.243.192	HTTP	Continuation or non-HTTP traffic	
	0.000936	141.55.192.70	141.55.243.192	TCP	http > 2025 [ACK] Seq=747 Ack=813 Win=7504 Len:	
61	0.141544	141.55.192.70	141.55.243.192	HTTP	HTTP/1.1 200 OK[Unreassembled Packet]	
62	0.000027	141.55.192.70	141.55.243.192	HTTP	Continuation or non-HTTP traffic	
63	0.000005	141.55.192.70	141.55.243.192	HTTP	Continuation or non-HTTP traffic	
66	0.015763	141.55.192.70	141.55.243.192	TCP	http > 2025 [ACK] Seg=2343 Ack=1166 Win=8576 Li	•

No.	Fortlaufende Paketnummer					
Time	Ankunftszeit eines Paketes z.B. in Sekunden					
Source	Absenderadresse (Schicht-2- oder Schicht-3-Adresse).					
Destination	Zieladresse (Schicht-2- oder Schicht-3-Adresse).					
Protocol	Protokollname z.B. ARP, UDP, HTTP usw. Hier wird das oberste					
	Protokoll der OSI-Hierarchie angezeigt was in dem Paket enthalten					
	ist. Sendet ein Webbrowser z.B. ein HTTP-Request ist dieser wie					
	folgt gekapselt (Ethernet II (IP (TCP (HTTP-Request)))). Im					
	Protokollfeld wird HTTP angezeigt, die anderen Protokollinhalte					
	kann man in der Paketdetailliste sehen.					
Info	Information zum Hauptinhalt des Paketes					

Jede Zeile in der Liste entspricht einem Paket im Capturefile. Bei der Markierung einer Zeile werden Details zum Paket in der Paketdetailliste und Paketinhaltsliste angezeigt.

4.3.2 Paketdetailsliste

```
Prame 24 (62 bytes on wire, 62 bytes captured)

▶ Ethernet II, Src: 00:e0:52:d8:9b:00, Dst: 00:30:05:75:42:85

▶ Internet Protocol, Src Addr: 141.55.193.21 (141.55.193.21), Dst Addr: 141.55.243.192 (141.55.243.192)

▶ Transmission Control Protocol, Src Port: http (80), Dst Port: 2022 (2022), Seq: 0, Ack: 1, Len: 0
```

Hier werden Details des ausgewählten Paketes, wie Protokolle und Protokollfelder ausführlicher dargestellt. Der Button zeigt an, dass weitere Details vorhanden sind und bei Bedarf können durch Anklicken des Buttons eingeblendet werden.

4.3.3 Paketinhaltsliste

Hier werden die Daten des in der Paketliste gewählten Paketes in hexadezimaler Form und als entsprechende ASCII-Zeichen dargestellt.

4.4 Statusleiste

Nach einem Captureprozess werden in der Statusleiste Information über das Capturefile: Filename (falls definiert), Filegröße usw. angezeigt.

Weiterhin werden Informationen zu den Paketen geliefert:

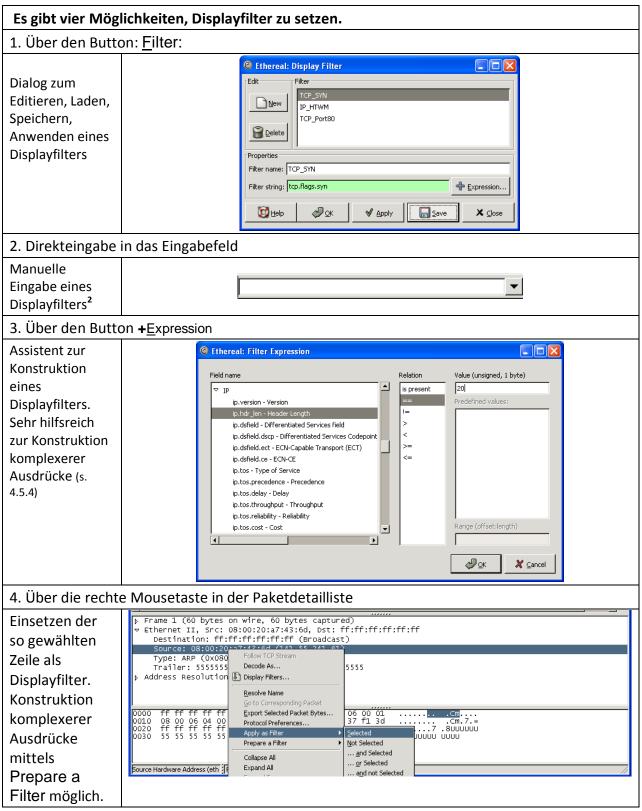
- P Anzahl der aufgenommenen Pakete.
- D Anzahl im Moment gezeigten Pakete.
- M Anzahl durch den Nutzer markierter Pakete.

4.5 Displayfilter

4.5.1 Einführung

Displayfilter werden zur Auswahl bestimmter Pakete verwendet. Beispielsweise kann man sich im einfachsten Fall alle TCP-Pakete oder IP-Pakete oder HTTP-Pakete anzeigen lassen. Darüber hinaus gibt es sehr komplexe Selektionsmechanismen.

4.5.2 Displayfilterleiste


Die Displayfilterleiste stellt mehrere Möglichkeiten zur Displayfiltereingabe zur Verfügung.

In der nachfolgenden Tabelle wird ein kurzer Überblick zu den einzelnen Buttons und der dahinter liegenden Funktionalität gegeben. Nachfolgend wird dann etwas detaillierter auf die Möglichkeiten zur Displayfiltereingabe eingegangen.

Element	Funktion
<u>Filter:</u>	Öffnet Dialog zum Editieren, Laden, Speichern, Anwenden eines Displayfilters
	Möglichkeit zur direkten manuellen Eingabe eines Displayfilters
♣ Expression	Öffnet Assistenten zur Konstruktion eines Displayfilters. Dies ist sehr hilfsreich zur Konstruktion komplexerer Ausdrücke
‰ <u>⊆</u> lear	Löschen des aktuellen Displayfilters
∜ Apply	Anwenden des eingestellten Displayfilters

4.5.2.1 Displayfiltereingabe

Es ist zu beachten, dass sich die Syntax für die Displayfilter von denen der Capturfilter unterscheidet.

² Die Hintergrundfarbe grün →alles OK, rot → fehlerhafter Eintrag

4.5.3 Displayfiltersyntax

4.5.3.1 Einführung

Displayfilter haben folgenden allgemeinen Aufbau:

cprotocol>.<element>.<subelement><operator><wert>

Elemente eines Protokolls sind mittels Punkt-Operator ansprechbar (z. B. ip.version \rightarrow IP-Header-Element "Version") (s. Displayfilteraufbau).

4.5.3.2 Vergleichsoperatoren

Protokollelemente können mittels folgender Operatoren oder ihrer "C"-ähnlichen Analoge verglichen werden:

Vergleichsoperator	Analog	Bedeutung (Englisch)	Bedeutung (Deutsch)	
eq	==	Equal	gleich	
not	!	Not		
ne	! =	Not Equal	nicht gleich	
gt	>	Greater Than	größer als	
1t	<	Less Than	kleiner als	
ge >=		Greater then or Equal to	größer gleich	
le	<=	Less than or Equal to	kleiner gleich	

Eine Liste der unterstützten Protokolle mit Protokollfeldern, die als Displayfilter einsetzbar sind, findet man in **Help/Supported Protocols** oder unter http://www.ethereal.com/docs/dfref/.

4.5.3.3 Protokollelementtypen

Jedes Protokollelement ist von einem bestimmten Typ. Das sind:

- Ganzzahlig, vorzeichenlos (8-bit, 16-bit, 24-bit, 32-bit)
- Ganzzahlig, mit Vorzeichen (8-bit, 16-bit, 24-bit, 32-bit)
- Boolean (True, False)
- Ethernet-Adresse (6 byte)
- Bytefeld (byte array)
- IPv4-Adresse
- IPv6-Adresse
- IPX-Netzwerkdaten (network number)
- Text string
- Floating-Point-Zahlen mit doppelter Genauigkeit (Double-precision floating point number)

Integer-Zahlen sind in dezimaler, oktaler³ (z.B.: $(60)_8 = \underline{\mathbf{0}}$ 74) oder hexadezimaler Form (z.B.: $(60)_{16} = \underline{\mathbf{0}} \underline{\mathbf{x}}$ 3C) eingebbar.

Alle Angaben (Name und Typ) zu den einzelnen Elemente des jeweiligen Protokolls finden Sie in Help/Manual Pages/Ethereal Filter unter dem Überschrift FILTER PROTOCOL REFERENCE.

-

³ Die Angabe von Zahlen im oktalen Format ist auch bei Capturefilter möglich.

4.5.3.4 Logische Verknüpfungen

Einfache Ausdrucke sind mittels logischer Verknüpfungen **and** od. **&&**, **or** od. **||** und **not** od. **!** kombinierbar.

4.5.3.5 Substring-Operator

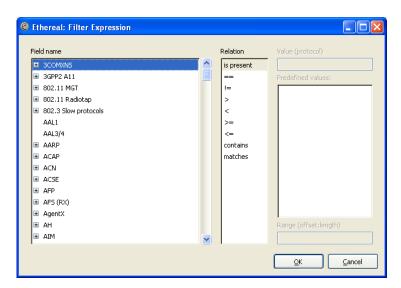
Mittels Substring-Operator lässt sich eine bestimmte Bytegruppe innerhalb eines Protokollelementes ansprechen.

Die gewünschte Bytegruppe wird nach dem Protokollfeldlabel in den eckigen Klammern mit Start-Offset und Länge bzw. End-Offset eingegeben. Es existieren folgende Varianten:

Befehl	Semantik			
fieldlabel[i:j]	i = Start-Offset, j = Länge			
fieldlabel[i-j]	i = Start-Offset, j = End-Offset, einschließlich			
fieldlabel[i:]	i = Start-Offset, Länge = 1			
filedlabel[:j]	Start-Offset = 0, Länge = j			
fieldlabel[i]	Start-Offset = i, End-Offset = Feldende			
Auch möglich:				
<pre>fieldlabel[i:j, k-l, m, :n, q:]</pre>				

4.5.3.6 Beispiele

ip.addr==10.0.0.5	Alle Pakete mit der IP-Adresse 10.0.0.5 .			
ip.addr!=10.0.0.5	Alle Pakete, für die IP-Adresse 10.0.0.5 als Zieladresse			
Ip.add: =10.0.0.3	oder Quelladresse gilt.			
<pre>frame.pkt_len > 10</pre>	Alle Pakete, dessen Länge größer als 10 Byte ist			
<pre>frame.pkt_len < 128</pre>	Alle Pakete, dessen Länge kleiner als 128 Byte ist			
<pre>frame.pkt_len ge 0x100</pre>	Alle Pakete, dessen Länge größer gleich 100 Hex ist			
<pre>frame.pkt_len <= 0x20</pre>	Alle Pakete, dessen Länge kleiner gleich 20 Hex ist			
ip.addr==10.0.0.5 and	Alle Pakete, für die die IP-Adresse 10.0.0.5 Ziel- oder			
tcp.flags.fin	Quelladresse ist und bei denen FIN-Flag gesetzt ist			
ip.addr==10.0.0.5 or	Alle Pakete, für die die IP-Adresse 10.0.0.5 Ziel- oder			
ip.addr==192.1.1.1	Quelladresse ist oder die Pakete, für die die IP-			
	Adresse 192.1.1.1 Ziel- oder Quelladresse ist			
not 11c	Alle Pakete außer LLC-Pakete			
	Alle Pakete mit den Ethernet-Rahmen, dessen Feld			
eth.src[0:3] == 00:00:83	Zieladresse die Bytefolge 00 00 83, die 3 Byte groß ist			
	und beginnt ab der 0.Byteposition, enthält			
	Alle Pakete mit den Ethernet-Rahmen, dessen Feld			
eth.src[1-2] == 00:83	Zieladresse die Bytefolge 00 83 von der 1. bis			
	einschließlich 2.Byteposition enthält			
	Alle Pakete mit den Ethernet-Rahmen, dessen Feld			
eth.src[:4] == 00:00:83:00	Zieladresse in der ersten vier (03.) Bitpositionen die			
	Bitfolge 00 00 83 00 enthält.			
	Alle Pakete mit den Ethernet-Rahmen, deren Inhalt			
eth.src[4:] == 20:20	20 20 ab der 4.Bitposition beginnend bis zum			
	Rahmenende ist.			
eth.src[2] == 83	Alle Pakete, deren Ethernetrahmen im Feld			
05	Zieladresse in der 2. Bitposition 83 enthält.			


Beachte: Alle Pakete für die andere IP-Adressen außer 10.0.0.5 erhält man mit dem Ausdruck !ip.addr==10.0.0.5 .

4.5.4 Filter Expression - Assistent

Wenn man sehr lange **Ethereal** nutzt, wird man die gebräuchlichsten Filterstrings im Kopf haben und diese direkt in das Eingabefeld eintragen.

Am Anfang weiß man aber oft nicht besonders viel über die Protokolle und die dort enthaltenen Elemente. Für den Ethereal-Anfänger ist deshalb die Verwendung des **Filter Expression - Assistent** besonders sinnvoll.

Dieser öffnet sich, wie bereits beschrieben, beim Klicken auf den Button **+Expression** in der Filterleiste:

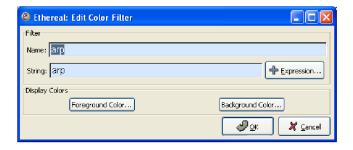
Field Name	Hier kann man das Protokoll bzw. ein Protokollfeld auswählen, falls das					
	Protokoll mehrere Felder hat.					
Relation	Hier kann man die Relation auswählen.					
Value	Nach der Auswahl eines Protokolls/Protokollfeldes und einer Relation kann					
	man einen Wert eingeben. Der Wert muss dem Typ des Protokollfeldes					
	entsprechen.					
Predefined	Bei einigen Protokollfeldern stehen vordefinierte Werte zur Verfügung.					
values						
Range	Hier kann man für die Werte einiger Protokollfelder Wertebereiche					
(offset: length)	angeben.					

Tipp: Sehr oft verwendete Filter können gespeichert werden.

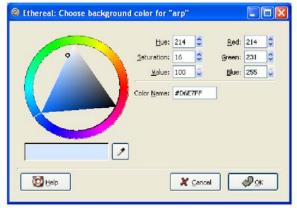
4.5.5 Farbige Darstellung einzelner Pakete

Bei sehr großer Anzahl aufgenommener Pakete kann es sehr nützlich sein, bestimmte Pakete farblich hervorzuheben. Auswahlkriterien können sein:

- einzelne Protokolle oder ihre Kombination mittels logischer Verknüpfungen,
- einzelne Protokollfelder mit bestimmten Eigenschaften oder ihre Kombination mittels logischer Verknüpfungen.


Alle eingegebene Werte werden in dem Coloring Rules-Dialogfenster, das man in der Menuleiste in View/Coloring Rules, oder in der Steuerleite unter Edit coloring Rules..., oder

beim Anklicken eines Paketes in der Paketliste mit der rechten Maustaste, angezeigt. Bei der Eintragung der "Coloring rules" muss man die Reihenfolge der Einträge beachten, wenn man sinnvolle Ergebnisse erreichen will.


Die Farbfestlegungen für die einzelnen Protokolle sollten mit den Up-Down-Buttons in der Reihenfolge angeordnet sein, die der Ordnung der Protokolle im Kommunikationsstack entsprechen (von oben nach unten). Will man alle ARP-Pakete und alle Ethernet-Pakete farblich unterscheiden, muss der Farbeintrag für ARP über dem für Ethernet stehen. Steht der Eintrag für Ethernet vor dem Eintrag für ARP, nehmen alle Pakete die Farbe für Ethernet an.

Alle Eingaben werden im **Edit Color Filter-Assistent** gemacht, der nach dem Anklicken des **New**-Buttons erscheint. Die Syntax für das Feld **String** ist wie die für Displayfilter.

Mittels **Foreground Color**-Button kann man die Schriftfarbe und mit dem **Background Color**-Button die Hintergrundfarbe einstellen.

Anlage: Spezielle Capturefilter

Diese speziellen Capturefilter werden z.B. auf IP, TCP, UDP, ICMP usw. angewendet. Die Protokollheader werden dabei als Array, beginnend mit dem Index [0], aufgefasst. Die Elemente des Arrays werden wie folgt adressiert:

Dabei ist zu beachten, dass die Länge eines Elementes mindestens ein Byte beträgt. Steht die Information aber z.B. nur in einem Halbbyte, wird dies durch eine zusätzliche Maskierung angezeigt.

IP-bezogene Filter

0

Der Aufbau eines IP-Headers der Version 4 (RFC 791) und die Indizierung der einzelnen Elemente werden nachfolgend dargestellt.

 Version
 IHL
 Type of service
 Total length

 Identification
 Flags
 Fragment offset

 Time to live
 Protocol
 Header checksum

 Source address

 Destination address

 Options
 Padding

 Data

16

Elemente-Indizierung des Arrays ip:

Element	Adresse
Version ,Internet-Header-Länge	<pre>ip[0:1]&0xf0, ip[0:1]&0x0f</pre>
Type of service	<pre>ip[1:1]</pre>
Packet-Länge	ip[2:2]
Identification	ip[4:2]
Flags, Fragment offset	<pre>ip[6:2]&0xE000, ip[6:2]&0x1FFF</pre>
Time to live	ip[8:1]
Protocol	ip [9:1]
Header checksum	ip[10:2]
Source address	ip[12:4]
Destination address	ip [16:4]
Options	ip[20:4]

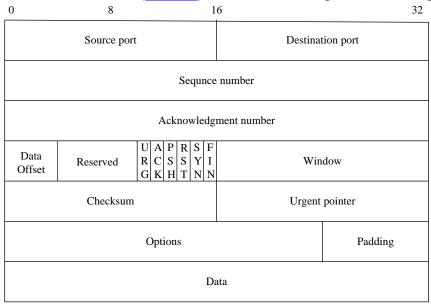
32

IP-ToS-Feld (Type of Service)

Mit diesem Feld kann man Qualitätsparameter für den Transport von IP-Paketen einstellen. Dafür werden 6 Bit verwendet. Diese haben folgende Bedeutung:

Bits 6-7	Bit 5: Sicherheit		Bit 4: Durchsatz		Bit 3: Verzögerung		Bits 0-2: Priorität	
Reservier t für die Zukunft	0	Normal	0	Normal	0	Normal	111	Network control.
	1	Hoch	1	Hoch	1	Niedrig	110	Internetwork control.
							101	CRITIC/ECP.
							100	Flash override.
							011	Flash.
							010	Immediate.
							001	Priority.
							000	Routine.

IP-Protokoll-Feld


IP-Protokoll-Feld zeigt den Nutzer des IP-Paketes an, z.B. TCP, UDP, ICMP. In der nachfolgenden Tabelle sind wichtige Werte, die dieses Feld annehmen kann, aufgelistet.

Decimal	Keyword	Protocol
1	ICMP	Internet Control Message
2	IGMP	Internet Group Management
6	TCP	Transmission Control
17	UDP	User Datagram
41	SIP	Simple Internet Protocol
55-60		Unassigned
61		any host internal protocol
63		any local network
68		any distributed file system
99		any private encryption scheme
114		any 0-hop protocol
138-252		Unassigned
253		Use for experimentation and testing
254		Use for experimentation and testing
255		Reserved

Weitere Protokolle finden Sie unter: http://www.iana.org/assignments/protocol-numbers

TCP-bezogene Filter

Nachfolgend werden TCP-Headers (RFC 793) und die Indizierung der Elemente gezeigt.

Elemente-Indizierung des Arrays tcp:

Element	Adresse
Source port	tcp[0:2]
Destination port	tcp[2:2]
Sequence number	tcp[4:4]
Acknowledgment number	tcp[8:4]
Header-Länge	tcp[12:1]&0xf0
Flags	tcp[13:1]
Window size	tcp[14:2]
Checksum	tcp[16:2]
Urgent pointer	tcp[18:2]
Options	tcp[20:4]

UDP-bezogene Filter

Der Aufbau eines UDP-Headers (<u>RFC 768</u>) und die Indizierung der einzelnen Elemente werden nachfolgend dargestellt.

0 16 32

Source port	Destination port
Length	Checksum
Data	

Elemente-Indizierung des Arrays udp:

Feld	Zugriff
Source port	udp [0:2]
Destination port	udp [2:2]
Header-Länge	udp [4:2]
Checksum	udp [6:2]

ICMP-bezogene Filter

Der Aufbau eines ICMP-Headers (RFC 792) und die Indizierung der einzelnen Elemente werden nachfolgend dargestellt

0	7	3 1	6	32
	Type	Code	Cheksum	
	Identifier		Sequnce number	
Address mask				

Elemente-Indizierung des Arrays icmp:

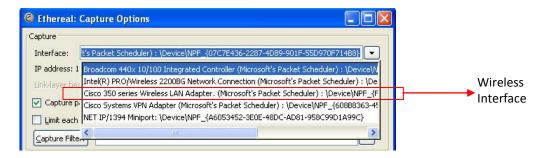
Feld	Zugriff
Туре	icmp[0:1]
Code	icmp[1:1]
Checksum	icmp[2:2]
Identifier	icmp[4:2]
Sequence number	icmp[6:2]
Address mask	icmp[8:4]

Туре	Code	Description		
0		Echo reply		
3		Destination unreachable		
3	0	Net unreachable		
3	1	Host unreachable		
3	2	Protocol unreachable		
3	3	Port unreachable		
3	4	Fragmentation needed and DF set		
3	5	Source route failed		
4		Source quench		
5		Redirect		
5	0	Redirect datagrams for the network		
5	1	Redirect datagrams for the host		
5	2	Redirect datagrams for the type of service and network		
5	3	Redirect datagrams for the type of service and host.		
8		Echo		
11		Time exceeded		
11	0	Time to live exceeded in transit		
11	1	Fragment reassemble time exceeded		
12		Parameter problem		
13		Timestamp		
14		Timestamp reply		
15		Information request		
16		Information reply		

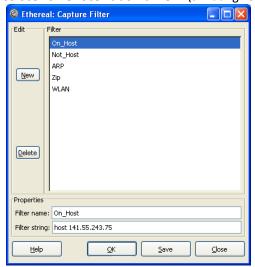
Details zu anderen Protokollen finden Sie unter: http://protocols.com/

Ethereal:Quickstart

- 1. Ethereal starten
- 2. Capture-Prozess starten:

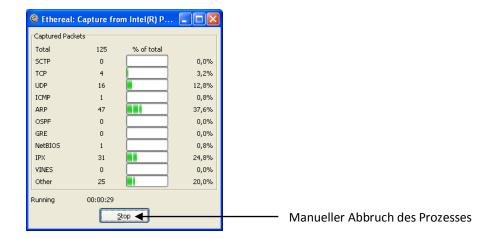

"Start a new live capture..."-Button drücken

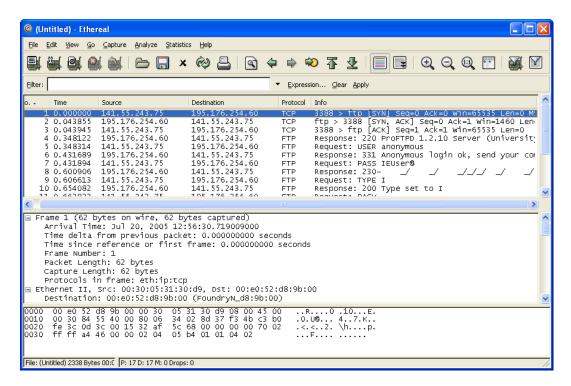
oder Capture/Start... auswählen


3. Interface auswählen (Netzwerkkarte), falls mehrere vorhanden sind.

4. Filterstring eingeben, wenn nötig ist,

oder schon gespeicherte über "Capture Filter" - Button und dann im "Capture Filter" - Assistent-Fenster auswählen. (s. Häufig verwendete Capture-Filter)


5. Optional Endebedingung einstellen oder später manueller Abbruch


6. Alle Einstellungen mit OK bestätigen und anwenden

Jetzt läuft der Prozess...

Nach dem, das Prozess beendet oder abgebrochen wurde, kehrt das Programm automatisch zum Hauptfenster zurück. Es werden dabei die aufgenommenen Pakete angezeigt und man kann mit der Analyse anfangen

Häufig verwendete Capture-Filter

Ziel	Filter String	
Alle HTTP-Pakete	port 80	
Alle DNS-Pakete	port 53	
Alle SMTP-Pakete	port 25	
Alle FTP-Pakete	port 21	
Alle TELNET-Palete	port 23	
Alle POP3-Pakete	port 110	
Alle IP-Pakete	ip	
Alle TCP-Pakete	tcp	
Alle UDP-Pakete	udp	
Alle ARP-Pakete	arp	
Alle ICMP-Pakete	icmp	
Alle Pakete mit	icmp[0]= 0 or icmp[0]= 8	
ping request/–responce		
Alle Pakete, die		
broadcast geschickt	[ip ether] broadcast	
sind		
Alle Pakete, die	[ip ether] multicast	
multicast geschickt sind		